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SUMMARY

The pfcblem of compined bending and torsion of cantilever plates
of variable thickness, such as might be considered for solid thin high-
speed airplang or missile wings, is cdn@idered in this paper. The
deflections of the plate are assimed to vary linearly across the chord;
minimization of~th¢ potential eﬁérgy by me#ns of tﬁe calculus of wvari-
atioﬁs then leads to two ordinary linear_differential‘equationg for the
bending deflections and the twist of the plate. Because the cantilever
is analyzed as a plate rather'than as a beaﬁ,'ﬁhe effect of constraint
against axial warping in torsion is inherently included. The applica-
tion of this method to speciflc problems 1nvolving static deflection,
vibration, and buckling of cantilever plates is presented, In the
statlc~deflection.problems, taper and sweep are considered.

e, - INTRODUCTION

-

" For anaiyais of thin aoli& wings of small aspect ratio such as
might be wtilized in high-speed airplanes and missiles, beam theory is
no longer adequate. Wingé of thisvtype are more nearly plates thén
beams and should be analyzed by plate theory. Plates are usually analyzed
either by.using the minimum potential eﬁérgy principle with the Rayleigh-
Ritz method, by the method of éomplimantary energy, or by solﬁing the’
Septis) ol fPeventinl eguatioﬁ of piat Hibrius (Sos refersace 1). - Bolutions
" to cantilever plate problems are not-réadily obtained by any of these
methods,‘eipacially for cantilever plates of arbitrary shape and loading,

In the present paper, therefore, or&inary differential equations which




are paxticulérly adapted to cantilever geamfprdblema, are derived from
basic relations by use of a simplifying assumption. The derivation
empleys the minimum1nmentlal~anergy Drinciple in conjunction with the
assumption that the chordwise deflection shape may be represented by
terms of a power series., The annlysis of the present paper is limited o
té the first tﬁo terms of this séries, The first term represents
trangverse displacemant gnﬂ the sec&nﬁ-represents twist. Together they
permit linear chordwise dei:lection: (the.‘ass;m@tion asually mede in wing
design). Use of the first two terms in the seriss leads to two ordinary
differential equations that define tﬁe‘sﬁanwise’variation of the -trans-
verse 3i3piacement and rotation. If results of greater accﬁracy are
required, additional terms in the power series may Se included (that is,
quadratic, cubic, ete.) with a corresponding increase in the number of.
ordina}y differentiai equationﬂ obtained. The same general method is
presented in references 2 and 3 where it is applied to different problems.
Solution of the two ordinary differsntial equations, subject to
bQunda:y conditions which arise naturally in the minimization procedure,
gives the bending deflection and twist at any cross sqct&on. The stresses
may bevobtained from the deflections by using the well-known equations
of plate theory. The order of acéuracy of the stresses will generally be
lless than that of the deflections. Because ordihary plate theory is employed,
the applicability of the anaiysis is limited to plates in which the order of
magnitude of the plaprform dimensiong is preater than ten times the order
of magnitude of the thickness. To extend ﬁhe applicability of such an
analysis to other dimensions; the effects of transverse shear deformation

must be included.
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The dériva£ion of the differential eguatione and boundary condi-
tions is presented and their application is discussed, and then specific
problems involving static deflection, vibration, and buckling of canti-
lever piates are solved. In the static-deflection oroblémé, taper and
‘sweep are considered.

- Since completion of the present paper, there has come to the
atténtion,of the author a recent papér (referenée'h) uhich preéehta
essentially the same ordinary differential équatioﬁs that  are presented
herein for static-deflection problems. The derivations of these ordinar&
differential equations were done by.differént‘metbods, and different

specific problems'were solved.




SY¥BOLS

Note: . Sign conventions are the same as that of reference 5

a, b, i, J

<
H
5

Xy ¥y 2 -

81, 82_, 83

ey (x), cp(x)

*

parameters specifying taper variation

local chord of plate '
local thickness of plate
length of plate measured perpendicular to root

mass per unit area

© lateral load per unit length, positive in g-direction

parameter specifying tﬂisting-momént distribution
censtant applied tuisting moment per unit length
transverse deflection, positive in z-direection

coordinates defined in figure 1

local flexural stiffness *-§93~r—:)'
. 12(1 - u?)

modulus of elasticity of material
tip shearing force -
tip torgue

funetions of x appearing in assumption.
w = W(x) + yo{x)

coefficients in differential. equations

@

.-

functions defining plan form (see fig. 1)




~aspect-ratic parameter - -Z‘%V% (L =)

variable obtained by transformation Xy = 1=-D0 %

tip bending moment
higher-order moment of stresses

bending moment per unit wildth

-

externally applied,tip bending moment per unit width
‘ v ——

twisting woment per unit width

exférnélly applied tip twistingﬁmoment per unit width

-

normal force per unit width, positive in tension

* constants appéaring in hormal-foree~distribution
! : .

Cequation Ny = Ny + 2L m,

shearing force ver unit width
, »

externally applied tip shearing foree per wnit width

modified Bessel functions of order

Poisson's ratic

frequency of torsional vibration
angle of sweep

energy



o normal stress

x

Txys Txg she;r stresses ‘
Bubseripts:

St Vv acc?rding to . St. Venant torsion f,haory

o

.S:ubacripts x and y on w denote partial differentiation with

respect to x and y , respectively.

Superscripts:
h homogeneoﬁs solution
pi *  particular integral

Primes denote differentiation with respect to x .

< -
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ANALYSIS

The structure considered in the p.i-eéent paper-is a thin, elastic,
isotropic pléte of gradually varyimg thickness and chord, as shown in
figure 1. -The loading may consist of distributed lateral forcez and
torques, spanwise no:jmal forces acting in 'the midplane of the plate,
and tip shears and torques., In addition, the plate may be undergoing
* gimple harm’ohic nﬂtian; The potential—energy expression for such &
plate .‘m.;lts defomed positien mll now be nresented. The afovemen=
tioned assumption of linear chordwisq defqmtion will then be incor—
porated, and-finally the po”‘csmtial enérsg will be mi;nimi’zed by means of . the.
calculus o‘f vari‘ationa. Ordinéry platb theory is used; consequently there
are t.he limtations that the cefl@ctione of the plate from a true developable
surface must be small compared to the t.hiclmess of the plate and that t.he
deflectiona of the plate are small enough 8d that the curvat.ures ‘may be
represented by the second derivatives.

'me stra:!n egergy of bending is given by the following expression

(see page 306 of reference 5):

l 8,
Hgtrain * %‘-6 Je 2(,(:)) D( X, Y) (Mes *?W)Z +

2(1 .-.'u.) (';xyz - tnvyy) dx dy | i (1)

where w  is the transverse deflection and

4

D(x,y) = ‘
it 12(1 - u?)

where h is the local thickness which is a function of x and y .
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The potential energy of transverse loadi:s of intensity P is

o, = - 6 (2x p(x,y)\v dx dy A\ (2)

The potential energy of the mi‘ddlé-_-planevspamise forces is

11 05(x) 2 | .
_IINX--@'{} %x) Hw “dx dy . o

The potential energy of the tip forces, moments, and torques is

X '. GQ(Z) - - = :
(2 G R O

If the plate is undergoing simple harmonic motion of circular fre-
quency o, and ‘W(X,y) is the deflection shape at the time of maximm

deflection, the potential energy due to inertia loading is ’

-

He T2

L L ep(x)
; 2% cy(x) mk(x’y)malzdx@ 3 ‘ "

The total potential energy is defined as the sum of all the energies

just listed or

B " Bome S i T

Ir II were minimized with respect to the deflection w(x,y)

total
by means of -the ealsulius of variations, the partial-differentisl equation
of plateb theory would result as the z;acessary condition the deflection

" shape must satisfy. (The partial diffex:ential 'equation of equilibrium of
a plate of slowly varying thickness is equation (g) of Chapter ‘fI of

- reference § Atogether with the definitions given by equations (185) and

(186) of reference §). - However, if first the deflection w 1s assumed %o




he of the form

w e W(x) + yo(x)

and the potential energy is minimized with respect to W(x) %and 8(x),,
two ordihary differential equations‘are obtained for W amnd 8 . The
latter procedure is followed herein. It should be moticed that the
Aéight-hand sidé‘of equation (6) is ﬁerély the first two terms of a
.power sefies in Y. If preater accuracy is desired, additional terms

. .

of the series such as y2a(x) and y3y(x)- may be used. Substitution

of expression (6) in the energy formulas (equations (1) to (%)) pives

U™
st

'-nstrain - ‘é’fé Lal’ﬁ"z +* 2&2W"9" + 8.36,"2 + 2(1-;},)313!2] dx (7)

| Hp""éz (oW + py8) dx

IIHx .- %ng (n]-W'? & znzv"'é' & n36 '2) dx
II,;, = = PW(2) = T6(1) « BW1(1) « U6 (L)

- @

2y Gw
QWE + 83@ ) ax

2 1.
= - 2
II, 5 L (8,9 + 28
where the coefficients ap, p, n,, P, T, ¥, and s, are defined as

follows: -

ran(x) =ch?i§) D(x,¥y) yn-ldy
1

.
a(x) . .
Pu(x) = .é'l( x) p(x,y) ¥y oy .

(9)

(10)

(11)



w T

“ealx)
n (x) s'él(?) szq ;dy

rc?(l)f‘ | i )
P = 3, dy
ey X

ea(l) .

T = Jr (y‘;csy % éxff)dy

cl(l)

c2(1) = n=1.
Mol W

'.’1-1 2

en{x) '
e mA(x,y)y dy

8n(x) a"cl(x)

If the following variational condition iz imposed
8100 0a1 = 8 gt a1 * tip

I »TI, +#TI,. +TII1)=0
i o) Hy, 6
then . .

/{)Z {[(81?¢“€)w + (azew):s =Py m?(slw & 92@) + (nly,:.v)v + (nzeg)'] 5@,54
kaagﬂ)“ : (aQW”)H ~ = u)(&lﬁv)' =Py < mz(sgﬁ + SQW) + (939')0 -

l
(ny7t) 1] 59} ax - K[(alw)' * (agt")! + nyw' + ngo'] E;W] -
0

4
{(_(333")' + (ai")! = 2(1 = pleget + nget ¢ o' ] 5@] L
0

[(“1’3",‘* %é")%]i ‘ k“ze" * agint)se ']i )

P OW(1) - T 86(1) + My &W'(L) + My 86'([) = 0



A% the root (x = 0), the following clarped-edge conditions are

impoaged ;

w(0,y) =-w,(0,y) = 0

It follows that
’ wW(0) = w(0) = 8(0) = 5'(0) = 0
. and, coﬁsequéntly; the variations of these quantities (8W(0), 8&W'(0),
eté.) al!b,vanish./ f .

At the tip {x=Ll), BW, 68, BW', and &8' are taken to be
arbitrény ard, consequently, the tip boundary conditions follow from
equation (12).,in the form .

(Ealw’)' + (anh")! + mW! +.n26'] . P

x =1

x =

_ &339")' + (a,")1 - 2(1-plage’ + o' + ngwt] = - T
(g™ + ap0")__ . _°- - ¥

(a36n + aQW")X el = Y,

-

The differentidl eguations for W and € follow from the vari-

ational equation (12) in the form
(3w 4 (azﬁ")" -n - m2(81W + 8,2) + tn1W°)' * (ng8")" = 0
(8;0)" « (a W")" = 2(1-u)(210')" = p, =

wz(ss(% + 85W) % (n301)1 + (ngW')1 = 0

(13)

(1k)

(1%)

(16)

(17)

(18)

(19)



The problem is to solve equations (18) and (19) subject to the
eight conditions given by equations (13) to (17).' Solution of equa-
tions (18) and (19) results in expressions for W(ic) and  ©(z). The
deflection w  of the plate is then given by equation (6).

The stresses may then be calculated by taking appropriate deriv-
atives of the deflections. The order of accuraey of the stresses will
be‘less than that of the deflections since successive‘derivéf.ives of
approximate expressions become more and more in error. For this reason
only those stresses are given which are least subject to error resulting
. from restrictions placed on the deflection function. From known results

of plate theory (See pages 288 and 298 of reference 5)

Gy 5 oy

GX(X,Y,E) ar: FK/—E + -ﬁ- (20)

6 %
g (rvn) = - 5L 2 (21)

3q 2 '
-rxz(x,y,z) - '5!15\:1 -(ﬁﬁ\) } . (22)
where |

Ug = = Dlwygy + wig,) = = D(W + 3on)

% - ) Dw, = (1-u)D6"

G, L R S 3D
B o Co e S e g0 - S ey - (0 i
. :
The stresses o, and Tey " are numerically largest when 2z = %

is numerically largest when 2 = Q.

h .'
é’ $
Txg
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SOLUTIONS OF SPECIFIC PROBLEMS

Outline of Problems Solved

Solutions‘are presented for a number of problems involving canti-
lever vlates of various shapes wnder warious loadings. The problamé
may be grouped as follows: : ;

'(A) ‘Rectangular plate of constapt thickness
% (1)‘ Tip torque ‘
ol - ) A '(25 Uniform diatribution of applied twisting moments
| (3) Torsional vibrations
(k) Laterel buckling -
(B). %ymmetricaldplanﬁform plate with chord and thickness variation
| (1) Symmetric cross section with‘sﬁanwise variation of chord

and thigkness according'to a power law
: (a) Linearly vanying.bhord, tip torgue, and varlous span-
wise distributions of twisting moments

(b) Cbord,variatians'bfhsr than;iinear {solution corre-
sponding to~arbitrary iorqﬁe loadingaiiéft in a formai state
for a class of chord variations)

g

_ (2) QBctangular cross section with constant chord and exponential
spanwise variation in thickmess; tip torque
(c) Skewed plate of constant thlckneqs and chord under tip loading
and uniform lateral loading X
The problems‘of group A were selectéd bécause théy are simple
_ Tundamental prbblams for which solutions obtained by the present mesthod can
be readixy compared yith solutions obtained by other methods. Comparison

¥ with elenentary beam theory is shown f{or these problems. The problems in
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grow B involve tapered plates and are therefore presented for their
possible application to wing anslysis. Problem ¢ was selected to show
the'apglicability of t@e method to swept wings. '

. Generally, the plan forms and loédings in the problems chosen are
those for which the assumption of linsar chordwise deflections might be
expected to nold - namely; prnbieﬁs involving wnswept piates underv
torqﬁe loading. A single eéception is problem C fér which the solution

presented must be regarded as only a first approximation.
Rectangular Plate of Constant Thickness

For a rectangular plate of constant thickness, the fiexural stiff-
ness D 4s independent of X and y. With the chord of the plate
denoted by ¢ and with the origin of doordinates at the center of the

root, the differential equations (18) and (19) become

pewV - Py -A¢2(31W’+ sée) + {n1W')"# (nze')' = 0

DT%— R 2(1 - p)Det" - Pg = &2(839 > 82W) * (nae')' + (nngv)1 -0

LS

and the boundary conditions, from equations (13) to (17), becoms

wo) = WHO) = 8(0) = 8(0) = O

(Dcﬁvn & nlww + ”29')xé 2 =P

(23)°

(2k)

(25)

(26)



5 ALy

%9;— e""b-. 2(1 - gJ.)Dce' + 'nje ! e %W']x-i" -7 : (?“?)
DeW (L) = - e : (28)
%—;—3- 0"(1) = -k, _ o (29)

For each loading econdition the differential equations are solved -
and soiutions that satisfy the boundary conditions are obté;i.ned in
closed form. .

Tip torque.- For a plate with a Atorqua_‘ T appliéd at x = Z", the

differen%ial. gquétions (23) and (2L) become
i DeW Y =0 | (30)
ped 6'L 2(1 - u)peem =0 (31)

12

with the following boundary conditions (from equations (25) to (29)):

<% W(0) = B(0) = 6(0) = £1(0) = 0 (32)
Dew'® {1) = © (33)

%‘353‘ 611 21 - pipcer(l) = -1 (3L)

DeW(l) =0 : (35)

22 an(1) = 0 Bl
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| The differential equations (30) and (31) have the following solutions

_ which patisfy the boundary conditicns:

- - ‘ w = O . =
' hxx )
4 = & - - - tanh h)\ 1 - )} 3
23 - u')Dc{l g “‘“"‘"( e o

From this equation it follows that 4' is not a constant as in the
- [ Bt. Venant torsion theory, in whick no constraint 'a‘g-ainat axial warping

is assumed, but is equal to '

6! = I (1-csn’i¥‘;+tanhhxainnl«‘-—-)

301 - piDe ey ¥
 The twist at the tip (x = 1) is

GETS w T 4 _ tenh la , s
GRS s o - -

The effects of constraint against axial warping are important in the
neighborhood of the ¢clamped roét,. Thus, as far e ﬁip’ twist is con-
cerned, the effects of constraint against axial warping becomes less amd
less with increasing‘ aspect ratio. For infinite aspect ratio {k-_roo-)
equation (38) gives the tip twist independant of the effects of constraint
against axial warping and,_‘thére?fore, eorresponds to St. Venant torsion
theory (Seé equation (1h9) of reference &)

a(1) TR <
st v 2(1 - w)oe

A oomparison of the tip twist given by the present ‘thaory with the
tip twist given by the St. Ve\nant torsion theory is presented in figure 2
and shows that, for aspect ratios lower than 3, the tip twists given by
the present theory are" appraciably lower. The curve is_ not continued below
A= %— bepu;xse for k(-jz‘- the twist depends on how the load is applied.
The normal siresses, or so-called bending stresses due to -torsion,

are obtained from equation (20) for the value of 6 given by eguation
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(37). These stresses are

o (x,y,A) -5;3{—"/ ( inh -, tanh b éosh "7{“)

Figure 3 showa the qunwise distribution of the normal stress as esti-

mated by the present theory for rectangular cantilever plates for values
_of the aspect-ratio parametery A of 1; 2, and h. This’figﬁre shows

. that the normal stress is O at the tip (1, ¥y, 3) and maximum‘at the
extreme fiber at the root (o, 2, §). This maximum value of the‘normal .
stress is-

a(O 2 -2-).

Uniform spanwise distribution'of upplied twisting woments.- For a

plate with uniform spanwise distribution of applled twisting momente (that
i Pp=t= Constant), the differential equationa (23) and {2L) become
; DV = o ol (39)

% etV - 2(1 - n)Des" = ¢ ' (L0)

The boundary comditions are the same as those for 'tip torgue, eguations
(32) to (36), except that equation (3h) is replaced by

- i R g (g sl wpee! (1) = 0 | (82
The difreren%ial equations (39) and (LO) have the following

solutions which satisfy the boundkry conditions:

Wel




= 1W= .

® hm
212 o5 R

-2
2(1 - p)ne 'l""f?' %Y

1 ' 1 2 i )} -
SRS U SN SRS | b _q L2
X (ta g v w\)_(\co@ l - T

i +

e {1 D e 4 B R 1)]
(1 - u)Dc 2k 822 { cosh Lh

For infinite aspect ratio (A~oo) this equation gives the tip twist

corresponding to St. Venant torsion theory

B T
(1 - u)be

Vst v

-

A comparison of the tip twist given by the present theory with the
tip twist given by St. Venant torsion'theory is presented in.figure L
and shows that, for aspect ratios lower than 5, the tip twiste given by
the present theory are appreciably iower;'

The normal stress at any point and the maxinmum normal stress are,

respectively,

12t T y= & : !
0. (x,y,2) = sfnh BAX _
AR ¢2n3 l=p [ : L

tanh L) Sty m\x; 1
< : +L>‘costh)°°ShT.'H}




‘and

Ox (01%’?')' = & tanh ba + o1 o
: 2 ch? 1 - Pase ;47\ cosh h)\ b !

>

The spanwise variation of the normal siress as estimated by the present
theory for rectangular cantilever plates for values of the aspect-ratio
parvaneter X of 1, 2, and L is shown in figum g,

Torsionsl Vibrations.- For a plate undergoing torsional vibration

the differential eguation for € {eguation (2h Y) becomes
De> : ;
15 o1V - 2(1 - p)het® - mAwg % 6 =0 ) (L3)

~with e(juations (32), (36), and (kl) as boundary conditions. The solu-

tion to the differential eguation (L3) is

e-a.lsinh +Azcoshg.+%sinﬁ*%cosvx

5 4 i
-whers .
P 52=8?\2\/1*—“-?-.f0 iy
' 1612 LR
2 .
- ax%\/:.+ .ELE.(_Ja_.)Q o
N A8 ey iy

and

" i 6(1 - p.)n2D
St ¥ m c?ﬁ
A

(See reference 7). | Fror" the boundary conditions 8( 0) = 8'(0) = 0, which

are included in equa‘cion (32),




S

=R
T Y
| \ B =~k
From the remaining boundary conditions, equations (36) and (hl), the
follovd.ng eriterion is obtained

R 2 e :
14'%.%_!sinhasiny+(lf%—'o§il) cosh B cos vy = 0

This equa;bion is solved for the fundamental frequency by finding
the lo?leat value of the freduency ratio m/ms‘; ‘V that satisfies it 'for.
a given value of the aspect-rahio. parametef ‘Xe 4 comparison of the
fundamental frequency of torsional vibration given by the present theory

with that piven by the St. Venant torsion theory is presented in

figure 6 and shows that, for aspect ratios lower than 3, the fundamental

frequencies given by the present theory are appreclably higher. A4s might

be-. expected the root effect is more jmmortant for lower aspect ratios and

-

this additional restraint increases the fundamental frequency.

Lateral 'buckling.-— For a cantilever plate loaded by a épanwiae
force,

- l
Ny = B+ O ¥y

which is a cowmbination of an s.:d.al force Nxo and a bending force in the

1

plane of the plate Hxl. The differential equdtiona for this case are

4 e
DeWY + W e + N, Sogn a0
X0 07T ‘

(Lk)
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pe3 .1V ‘ AL )
P 6 - 2 l s chﬂ * N —i-.@" * H ——-Wu - ()
12 ( 2 0 12 X1 6

with the _f‘ollowin‘g boundary conditions:
W(O) = W' (0) = 6(0) = 2'(0) = O 7

@cw"wra cH! + N, g?-g') e
. *0 6 x=1

¢3

x=l

. ®W(1l) = en(1) = 0

Integration of egch differential equation and use of the boundary

conditions (LGb) and (Lée) lead to

F: 2
DeW'™ + NxOcW' + le %— ef = 0O

2
. e
T

%-_-?9’"‘-'-2(13_'- u.)Dce'i'H' 93-3'4 W e 0

x4012

The other boundary conditions are satisfied by taking

W-A(l-cps%?%)

eiE(l-coa%Exf)

‘where n is an integer which represents the number of spanwise buckles,

Equations (L7) and (L8) are also satisfied by these expressions for W

De3 ., : ¢’ gt
- 2(1 = p)Des?t + ¥ o + M i_w'] e 0
{i? Xp 12 .6

(b5)

(béa)

(hé‘o)‘

(bée)

(L6d)

(h7)

(L&)
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and § 4f the following stability criterion is satisfied:
2)/ : THe 22\ 2
1 (ﬁ,l.eaz--“*olj.}.@__)*ol s
y 1} n¢D h n*, o ﬂ2D 3 nzD

- Equation (L9) gives the critical combinations of NXO and My

for a given value of the aspect-ratio parametarA Ao For each value of

h it is necessary to use the value‘of n that gives the lowest value
of My, for a given value of Ny, , or vice versa. For the present

problem, un = 1 always gives the lowest values.

In reference § (?agé 2L3), there ie presented & solution for the .

~lateral 5uckling of a strip bent by two equal amd dpposite eccentri-
caliy applied forces in:its rlane. As wouid be expected, the present
solution differs from that of reference § in that it includes (a) the
efféct of constraint against axisl warping and (b) the effect of the

miform axial force in reducing the torsional stiffness of the beam.

Symmetrical Plate with Chord and Thickness Var%a@ion |
A class of explicit solutions are presented for e syrmet-
rical cantilever plates with chord and thickness variation. With the
origin of coordinates at the center of the root the differential equa-
tione (18) and (17) are independenﬁ of each other for a 3ymmetricai.
plate in tip torque and distributed twisting moments (ap = 0). Only

equation (19) need be\considered;'this equation becomes

(a30")" - 2(1 - ) (88")' - pp = O

/

(L9)

(50)
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with the boundary conditions
' 8(0) = e'(0) = 6"(1) » 0O

» fepre20cwmed) 2o ¥
4;(- | . " t

where 895 345 and p, are functions ef x defined in the section
entitle& “Analysis.® Integration of equation (50) for tip torque alone

and use of the bracketed boundary condition lead to _
(a;0")¢ - 2(1-p)as0 = -T SORR

For applied twisting moments alone, after integration equatibn (50)

beeomes

(a8 - 201 - wag0! = = £ pp(B)k - (s2)

Symmetric cross secﬁion with algebraic spanwise variation of chord

_and thickness according to a power law.- BEquations (51) and (52) can be-

solved in closed form, when the stiifness D (which is proportional to
'_ﬁhe third power of the thickness) and the chord "¢ vary aceording to
the laws !

1 i b
bx ¥

= -
D DO (1 7 ) K(ﬁ?

. =$
/ 3
¢ f esfl - %?
EL3(0,0)

where D0 = X is a symmetric function of y/ec, and <y

L 12(1 - w2y’
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is the root chord. From the dei’.‘initibn of a, and 63 _'

.  s 5(1" ) fc/ax@dy
0&1. bx)i -c/?K( )

Sett.lng e g leads to
c N
i+j / s

ay = DO%{I = Ly /2 K(n)dn

By use of

2
%z‘kk%%(l-u)

o fi/z X(n)dn

1/2
! N Hat
19/ L1r0 X(nn én

(53)

(5k)



equation (51) becomes

XN Q;lp do | . 1600° 0 12713

2 1

and equation (52) becomes

d o 16 2 b0 1eb
p do) _ 10hg 121
35—'<f}‘ dx Ky o B =i b
1 1 b2 7 DOICOth e

It may be seen that K = kD -y = 1 for a plate of rectangulsar

eross section. Values of kD and kk are given in the following table

for some typlecal cross sectionss

pg(Sl)dil f

Crosa section kD kk
Rectangular 1 1
Elliptical 3n L2
: 32
Parabolic-are 16 3
105
Diamond TR g
20

For symmetric sections mot given in this table, equations (éB)

and (5h) may be used.

This solution is divided into two cases: (a) linearly varying

chord and (b5) chord variations other than linear,

(55)

(56)
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(é,) ‘Linearly 'va.rying chords tip torque and various spanwise.
. digtributions of twisting moments: In tbé special case of linearly
varying chord (j =1 or p=gq+ 2) ,b the solution to the homogeneous

part of equations (55) and (56) can be éxpressed in the form

where A and A, are arbitrary constants and

The particular solution of equation (55) which applies to tip-torque

“loading is

o : 1293 xl-q

162!
)

1 3b3{1¢

The complete solution to squation (5%) therefore is

R g
0o v ot apn e T e

» _ & 1
i | . 1600
o D01c03b3 <q oo )

be
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Since ¢ = 40 5
dony
b Byl Byt 1277 Ry
e )
£ = b xﬁl +___;A2___.x 2 *Aj‘ L
Py =3 Bt | 16,2} 1 -q
s Ltk ¥, 0
; - Do"ob(‘“ T )

and Al, A2, and AB are determined by use of the houndary conditions

i
o(r) = L1y 404 _ 1y ap
deg dxf( -

The resilting expression for the angle of twist is

| (
SR = 2 2 = ,1{52(1 - b)az +
g &
oteg’t? (@ + S llp,1 - 02 - gyca - 02!

The particular solutions for equation (5€) can be found in a
similar manner when the applied.twisting moments Py are known. If

pa' has the form




where the value assigned to r defines the distribution of applied

twisting moments then

oo 1 it r+l . i r+l_ ~q
P = 12pon Xy =q : (1-v) x
D01003bh(r + D)\(r+2)r+1-q)- 16652 ‘q ; léhoz

b2 ")2 ¥

As is done for tip-torque loading, the angle of twist can be found

to be

. '12920_f.h 1 : R
- ' Y, * Y1, )R - Si:
1 2j"2
Dol BbL(r + 1) ﬁ (1 o b)s‘? ﬁl(l b)ﬁl i }
3 314.1 oy
Yy (r+1 - Q)(1 - b)”l.q + vpa(l - b-)'q] ﬁ-—-—-—-—- =
. 81 + 1

[(\Yl g B0 - o)L - e 1 - Q)L - )T

Potl - r+2-q B
. X -1 x S, 8 x -1
TéQ(l - b)-é} 1 g - 1 - Y 1 (a7)
p-+1 re2-g - -l-4q
where
.

‘Yl = - '

16102
) ] = - ,
(r+2)(r + q) c—
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.Equatioﬁ (57) can be used for_findingbthe angle of twist due to
distributed twisting moment which varies as .the -rth pqﬁei of the local
chord, - , ] | s A Mt —

' (b) Chord variations other than limear: The solution to the homo=
geneons part of equations (ﬁS) and (56) when” p f q+2 and therefore

jFA1l is
el %C""“ ]

where Im is the modified Bessel function of the first kind of order v

and - Kvy is the modified Bessel function of the second kind of order m and

n = 1-» _1-4-33
q —iprg 2(1-_3)

RIS, ol
a

The next step is to find the partlcular integral oPL for the
torsion load considered from equation (55) or (26). The complete

expression for- ¢ 1is the sum of the homogeneons solution @h and the

particular integral Qpi‘. It is then necessary to integrate ¢ and to

r

o




use the boundary conditions to get the final expressions for the twist 6,

Solution for the twistlby meané of Bessel functions is straight-
-forwafd_for many'values of n . Splutions for cases in which #1 are
not carried baybﬁd this point since they involve tabular functions and
therefore must be worked"out-sepérately for any set of values of the
paramneters. . :

Rectanyular cross section with épnstani chord and exponential spanwise

variation in'thicknesa; tip torgue.- A case that may be of interest is the

constant-chord cantilever plate with expoﬁentially decreasing stiffness

(stiffness is proporiional to the third power of the thickness).

. - -ax’
D Doe

and :
a = Dbce'ax

-2 .
e
3 12

For a plate auﬁjected to tip torque the differential equation (51) is

N 1602 _ay . 127 ;
0 gn)v = _Te 8! -B-;;-B- (58)

The solution of eguation (58) is

2
6 =4, eP1% & A2e * Ay 3L eax
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where

a-Va *‘T

For the boundary conditions 65(0) = 6'(0) = 8"(I) = 0, tte final ~

solution is

s AT TR R T R W

g % ik - . i = [.—1 bye S aea?')(eb“ - 13 +

3 . 2 . 'y
Lp, e b * - bye 1 :

byl ali/ v / \
B SOl Q) R Gt

-

- Ty

Skewed Uniform Plate with Tip and Lateral Ioading

In this section the differential equatione for a skewed uniforn
plate uqdér tip and lateral loading are solved; and equations afe

obtained for the twisting and bending deflections of a cantilever plate

under tip load, tip torgue, tip bending moment, and uniform lateral

loads
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For a skewed plate of chord ~¢ (measured parallel to the root as

shown in fig. 7) and with sweepback angle A
= - : : L 9-
‘cl(x) (1= x) tan A, 3
.cz(x.) = (1 =-x)tanA + §

and for uniform thieckness

,alsbq

A aa-Dc(l - x} tan A

8 nDc&; S el umzl\}

Equations (18)‘ and- (19) become

De {wlv + {( L= x) tanper ] "i =Py - (59)

.
L
c 4

ol .
De ({{% + ( L - x)2 tan?/\} eui L {( 1 = x) tz.,‘n_{\ W"] " o 2(1_”')69. pz
(€0)

and the gorreepoftding tip boundary conditions from eqﬁations (1) to

(17) become

De LW"' + [( Z..- :;)‘tanl\. &"] '}x.l- -P | (61)
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De ﬁi—g’ (1 -y) tan J\.} ""} e [(Z" x) tan./\,;?’"}' = Al = P-j‘)' ..r‘ (62)

e - X1
Dewn(l) = -¥ ! . (63)
Dc B (1) - -EQ V s ()

= Two 1ntegrations of eqmtion (“ 2) wi’sh raspect to % and use of

_ oomdary conditions. (61) and (63) give

Do + (- x) .tanf\e"l -/;ffl (8% an o B2 = x) -1y (82)

Integration of equation (€0) with respect to % and use of.
boundary condition (62) give

Dc'({[“i + (L= x)2 tanaA} G"E ' s K L= x) taniw"]' -

o~
7

[ & 1.

N

2(1 - u)B') -~ Lleppag -t

If W from equation (65) is substituted into equation (66), the fol-

'lowing eguation in © alone results:
De 2 - 2(1 A )r J 2 - ,.l “ (E)d"i; - T =
12 27 Jx P

tan JL{(Z - x) i-&l J;;L pl_(i)d%, dn + P(L - x) - Hlﬁ' - (67)
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The solution of equation (96) for the case of‘ vniform lateral load
Py = pc, pz' - pc( - x) tan which satisfies the tip boundary condi-

tion (6&hL) a1d the roo'g houndary conditions 8(0) = 61(0) =0 is

-

E e e Lo tanft[ SRR
8 » A, |\ cosh 22% - 1} + A4, sinh » P (L - x) + 32 +
Vi ) . L & -p) ; ]

"‘)

P tanh T ' iy damk s o o
Z SIS : 0
2e(1 - u) : x) : -I 2Dc(1 - u) i 2De(l - u) 5 (68)
where . .
Al,,’ - 4, tanh I - L _12!’!2 + P tand )
: 1602cosh A\ Dpe3  De(l - M}

T b o ATy

A1 2D( - ) 8 De(l = 1) 2De(d -8)  2ne(l - )
Equat:ion (58) giveé the angle of twis:t 8 of a sike;wad uniforn canti-
Alever'plate under tip load P, tip torque T, tip bending moment N,
~ and wiiform lateral load p. From equation (65) with the root boundary ‘
conditions _W(O) » 'W'(O) = 0, the corresponding bending deflection ¥

is found to be

we B X;(élzx? - hlx3 s xb)(l + 2 t.anj\_) 3 ta.n2."\_ Z.'in'} -
2D - ' 1-w 2(1-;;)_ 22 |
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C Mx® i
--—-(’ﬂx - 3 )(1 s 2 tﬂﬂm 1 uan::’/L Ttan A 2
1 = u; 2Dc(1 - )

v /

© tanl( (- x)o - ta:a}\ il (s.’mh }5-)’5- - l.‘.)‘.z’;‘- + A kcwh lu‘\x - jf'j!

With ¥ and 6 cammletelj determinéd the dsflection at any point can

now be found directly from equation (1) and the stresses can be found

‘from equations (20) to (?4)

CONCLUDING HEMARKS'

A_simplifled nlaue theory applicable to thin cantilever plates af k¥
arbitrary shape and thickness variafion and with arbltrary load has been
presented. The theory, as prasented, is basgd on the assumgtion of
iinear deformations in the chordwise direction,

‘Bolutions are presented for three groups 6f specific problens
invelving cantilever plates of various shapes under various loading.
TheiprnblemS'of the first group deal Q&tb a rectangular ﬁlate of constant
thickness in torsion, torsional vibration, and lateral buckling. These
problems’ were selected because they are simple fundamental problems whieh
can be readily compared with sclutions obtaiped by other methods. The

present theory agrees with conventional théory for rectangular plates of

high aspsct ratio. Since the present theory includes the effects of

S M
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congtraint againét axial warping ﬁhiéh are important in the neighborhood
of the'foot; the present theory gives appreciablj lower deflections and
apprecisbly higher frequeﬁcies than conventional theofy for low aspect,
ratios (A< 3). There are no unclassified experimental data on
rectanéular cantilever plates available in the literature tb which
the result 0fithe pregent ﬁheorx;cam be commared. There is, however,
SOme classified dat; oﬁ tofsional vibration of a square cantilever .
plate, and these data dﬁ agree with the results of the theory sresentéd :
here., The problems of the seeond érohp deal w@thlsymmet;ic planform
plates with symmetric cross-sections in torsiq;. These problems were
" gelected for thelr possible application to wing ahalyéis. The third
oroblem was that of tip and lateral loading of a swept-back plate of
. constant chord and constant tbicgness. This proilem was neleéted %o phbw
the applicability of this method to swept wings. Genemally, the planforms
and loadings in the problems chosen are those for which-the‘assuﬁption of
linear chordwise deflections migh?% be expected to hold - nanely nroblems
involving unswept plates under torque loading. A single exception iz the
third problem for which ;hé solution presented must be regarded as only
a first A@proximation. For pure bending problems, the deflections obtained
in this manner would be off by a factor of as much as 1 - pzv as a result
of the.artificiel restraint against anticlastic curvature.- For problema
.involv%ng orinecipally bending, therefore, it may be desired to extend the
present theory to give more adcurate results by considering a more general

assumotion for the deflection w. The expression
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w = W(x) + 8(x)y + a(x}y?

#”

which ineludes the quadratic term a(z)y? in addition to the linear

terms whould give more accurate fesults. .This more general expression

for w, when used with the emergy method, would lead to three linear,

ard a complete set of boundary conditiouns,

1,

2.
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Figure 1.- Coordinate system used in the present analysis for a cantilever
plate of arbitrary shape: with arbitrary thickness variation.
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Figure 2.- Comparison of the tip twist given by present theory with that
given by St. Venant torsion theory for a cantilever plate subjected to
tip torque.
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Figure 3.- Spanwige distribution of the normal stress as estimated by the
present theory for a cantilever plate subjected to tip torque.
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Figure 4.- Comparison of tip twist given by present theory with that
given by St. Venant torsion theory for a cantilever plate with a
uniform distribution of applied twisting moments.
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Figure 5.- Spanwise distribution of the normal stress as estimated by the
present theory for a cantilever plate with uniform distribution of
applied twisting moments.
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Figure 6.- Comparison of the fundamental frequency of torsional vibrations
given by the present theory with that given by St. Venant torsion theory
for a cantilever plate.
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Figure 7.- Skewed uniform cantilever plate considered.




